Tag Archives: energy

Macro and Climate Economics: It’s Time to Talk about the “Elephant in the Room”

This blog was written for the Cynthia and George Mitchell Foundation, and originally appeared here: http://www.cgmf.org/blog-entry/213/.

This is the first of a two-part series. Part 2 is: “The most important and misleading assumption in the world.

If we want to maximize our ability to achieve future energy, climate, and economic goals, we must start to use improved economic modeling concepts.  There is a very real tradeoff of the rate at which we address climate change and the amount of economic growth we experience during the transition to a low-carbon economy.

If we ignore this tradeoff, as do most of the economic models, then we risk politicians and citizens revolting against the energy transition midway through.

On September 3, 2016, President Obama and Chinese President Xi Jinping each joined the Paris Climate Change Agreement to support U.S. and Chinese efforts to greenhouse gas emissions (GHGs) limits for their respective country. This is an important signal to the world that the presidents of the two largest economies and GHG emitters are cooperating on a truly global environmental matter, and it provides two leaps toward obtaining enough global commitments to set the Paris Agreement in motion.

The economic outcomes from models used to inform policymakers like Presidents Obama and Xi, however, are so fundamentally flawed that they are delusional.

The projections for climate and economy interactions during a transition to low-carbon economy are performed using Integrated Assessment Models (IAMs) that link earth systems models to human activities via economic models. Several of these IAMs inform the Intergovernmental Panel on Climate Change (IPCC), and the IPCC reports in turn inform policy makers.

The earth systems part of the IAMs project changes to climate from increased concentration of greenhouse gases in the atmosphere, land use changes, and other biophysical factors.  The economic part of the IAMs characterizes human responses to the climate and the changes in energy technologies that are needed to limit global GHG emissions.

For example, the latest IPCC report, the Fifth Assessment Report (AR5), projects a range of baseline (e.g., no GHG mitigation) scenarios in which the world economy is between 300 and and 800 percent larger in the year 2100 as compared to 2010.

The AR5 report goes on to indicate the modeled decline in economic growth under various levels of GHG mitigation. That is to say, the economic modeling assumes there are additional investments, beyond business as usual, needed to reduce GHG emissions.  Because these investments are in addition to those made in the baseline scenario, they cost more money and the economy will grow less.

The report indicates that if countries invest enough to reduce GHG emissions over time to stay below a policy target of a 2oC temperature increase by 2100 (e.g., CO2, eq. concentrations < 450 ppm), then the decline in the size of the economy is typically less than 5 percent, or possibly up to 11 percent.  This economic result coincides with a GHG emissions trajectory that essentially reaches zero net GHG emissions worldwide by 2100.

Think about that result: Zero net emissions by 2100 and, instead of the economy being 300 to 800 percent larger without mitigation, it is “only” 280 to 750 percent larger with full mitigation.  Apparently we’ll be much richer in the future no matter if we mitigate GHG emissions or not, and there is no reported possibility of a smaller economy.

This type of result is delusional, and doesn’t pass the smell test.

Humans have not lived with zero net annual GHG emissions since before the start of agriculture.  The results from the models also indicate the economy always grows no matter the level of climate mitigation or economic damages from increased temperatures.

The reason that models appear to output that economic growth always occurs is because they actually input that growth always occurs.  Economic growth is an assumption put into the models.

This assumption in macroeconomic models is the so-called elephant in the room that, unfortunately, almost no one talks about or seeks to improve. 

The models do answer one (not very useful) question: “If the economy grows this much, what types of energy investments can I make?”  Instead, the models should answer a much more relevant question: “If I make these energy investments, what happens to the economy?”

The energy economic models, including those used by United States government agencies, effectively assume the economy always returns to some “trend” of the past several decades—the trend of growth, the trend of employment, the trend of technological innovation.  They extrapolate the past economy into a future low-carbon economy in a way that is guesswork at best, and a belief system at worst.

We have experience in witnessing disasters of extrapolation.

The space shuttle Challenger exploded because the launch was pressured to occur during cold temperatures that were outside of the tested range of the sealing O-rings of the solid rocket boosters.  The conditions for launch were outside of the test statistics for the O-rings.

The firm Long Term Capital Management (LTCM), run by Nobel Prize economists, declared bankruptcy due to economic conditions that were thought to be practically impossible to occur.  The conditions of the economy ventured outside of the test statistics of the LTCM models.

The Great Recession surprised former Federal Reserve chairman Alan Greenspan, known as “the Wizard.”  He later testified to Congress that there was a “flaw in the model that I perceived is the critical functioning structure that defines how the world works, so to speak.”

Greenspan extrapolated nearly thirty years of economic growth and debt accumulation as being indefinitely possible. The conditions of the economy ventured outside of the statistics with which Greenspan was familiar.

The state of our world and economy today continues to reside outside of historical statistical realm. Quite simply, we need macroeconomic approaches that can think beyond historical data and statistics.

How do we fix the flaw in macroeconomic models used for assessment of climate change?  Part two of this two-part series will explain that there is research pointing to methods for improved modeling of what is termed “total factor productivity,” and, in effect, economic growth as a function of the energy system many seek to transform.

The Most Interesting Chart I’ve ever Made: Energy versus Money Leverage

Figure 1 is perhaps the most interesting chart I have ever made. The purpose of this figure (from my publication here) is to provide context into metrics of net energy and see how they relate to economic data. Here, I’m asking a fundamental question: should our (worldwide) society be able to leverage money more than we can leverage energy? My hypothesis is “no” and would be represented by values < 1 in Figure 1. Clearly the plotted ratio of ratios in Figure 1 is not less than one (for all years) per my hypothesis, so why might this be the case?  As I discuss below, understanding the data in Figure 1 is crucial for making better macroeconomic models of the economy that properly account for the role of energy.

NPR_compare_NEPRdirect_World44Only_White

Figure 1.  This is a ratio of how much the worldwide economy leverages money spent by the energy sector relative to how much surplus energy is produced by the energy sector itself.  Specifically this calculation (using world numbers) = (GDP/money spending on energy by the energy system) / [ (world primary energy production – energy spending by the energy system) / energy spending by the energy system)].

I created Figure 1 by dividing the data from Figure 3 by the data from Figure 2.  Figure 2 is a calculation of the leverage of energy, and Figure 3 is a calculation of the leverage of money. I now describe each of Figure 2 and 3.

For a full description of the underlying data and calculations, see Part 2 (and Part 1) of my papers in Energies in 2015.

Net Energy

Net energy provides an additional lens, besides money, to understand how our economy works.  Net energy is the amount of energy that is left over for consumption after we subtract the energy inputs that are required to produce that energy.  The energy production and consumption quantities you see in statistical databases (such as those housed by the Energy Information Administration (EIA), BP, and International Energy Agency (IEA)) is gross energy, often referred to as total primary energy supply (TPES) consumed per year.  For example, the world TPES is approximately 550 EJ as reported by the EIA.

Figure 2 shows the data used in the denominator of the calculation of Figure 1.  The solid red line indicates the average value for the world. The underlying data come from the IEA. This figure indicates that since around 1995, for every unit of energy consumed by the energy industry, the energy industry provides about 14-15 units of energy for all consumers and other industries.  Before 1985, this “energy return on energy invested” was greater than 20 (data are not available to for a viable estimate before 1980).  In the case of this figure, there are no other types of inputs considered besides energy itself.  No wages. No materials. No computers or consultants. Nothing but energy.

NEPRDirect_EachCountry

Figure 2.  This is a ratio of how much net energy the worldwide energy system produces for all other sectors and consumers after it consumes the energy it needs for its own operation.   The solid red line represents the world average.  The dashed red line represents the average for OECD countries only. Each gray line represents the data for one country (the countries with high values are countries that are net energy exporters). Specifically this calculation (using world numbers) = [ (world primary energy production – energy spending by the energy system) / energy spending by the energy system)].

Money Leverage

Figure 3 is about money, not energy.  Consider adding up all energy spending (in money) by the worldwide energy industry and dividing that by the GDP of the world. A typical quantity is 0.04-0.07, or 4-7%.  Essentially this is an input (spending by energy sector) divided by an output (GDP).  In order to compare these monetary data to the net energy data of Figure 2, I need to phrase them in an equivalent manner.  Figure 2 shows energy outputs divided by energy inputs.  Thus, by inverting the monetary energy spending ratio, I turn it from a ratio of input/output to a ratio of output/input.  Thus, if world energy sector spending was equivalent to 5% (or 0.05), 1 divided by this number is 20. Thus, we can say that the economic output of the economy is 20 times larger than the monetary spending of the energy sectors.  Figure 3 plots this ratio for the world.

NPReconomic_World_white_png

Figure 3.  This is a ratio of how much the worldwide economy leverages money spent by the energy sector.  Specifically this calculation (using world numbers) = (world GDP / money spending on energy by the energy system).

Why this is interesting

Fundamentally the ratios of Figures 2 and 3 are about measuring inputs of “something” to the energy industry in comparison to outputs of that “something” consumed or created by the rest of the economy.  In Figure 2 the “something” is energy, and in Figure 3 that “something” is money.  Figure 1 shows the data of Figure 3 divided by the data of Figure 2.

Should the output:input (“leverage” or “return on investment, ROI”) of energy (often termed EROI) be greater than or less than the output:input (“leverage” or “return on investment”) of money?  My hypothesis is that the energy ratio should be larger than the monetary ratio.  Thus, the measure in Figure 1 should less than 1.

The reasoning is as follows.  The energy inputs used in Figure 2 only include energy consumed by the energy industry.  As I wrote before, no other inputs such as wages, materials, offices, or administration are considered.  By considering any number of these other inputs (and converting to units of energy), the energy return on investment ratio can only decrease.  However, the assumption behind the monetary ratio of Figure 3 is that all types of inputs have been included in units of money.  That is to say, the energy sector purchases inputs as energy, machines, and various services from itself and other economic sectors.  Thus, there are many more inputs (theoretically all required monetary investments) considered in the monetary output:input ratio for the energy sector and economy.

So back to my hypothesis that the ratio plotted in Figure 1 should be less than 1.  How can we explain values > 1?  The general (but not satisfying) answer is that GDP (gross domestic product) is a measure of economic throughput that is not backed by anything purely physical, but by what we (as consumers) perceive as valuable.  Thus, we can value a service or product at one level in one year, but change our mind as to the value in another year.  Much value is also currently placed in information-related companies (Facebook, IBM’s Watson, etc.), and there is ongoing debate as to whether the value of this information (e.g., in social network companies) is overvalued.  Is social networking overvalued, as a business, and will these valuations decline if people can’t actually afford to buy new products suggested by the ads targeting them?  I suppose we don’t know the answer, and we’ll eventually find out.

Debt as an Explanation

But I think debt accumulation is likely the best explanation for why the economy seems to be able to leverage money more than energy spending by the energy sector.  To some degree, increases in debt in the 10-20 years leading up to 2008 (when the ratio in Figure 1 reached a value of 1) were responsible for increasing the quantity GDP.   Government and consumer spending beyond their means shows up as increases in GDP.

Also, if we consider increased debt a expectation of increased future consumption, and consumption (and production) require energy, then increases in debt are an expectation for increases in energy consumption.  And don’t get confused here with discussions of “decoupling” energy from economic activity.  There is yet no evidence that worldwide economic growth occurs without increasing total worldwide energy consumption.  Possible evidence for this debt explanation is the fact that debt accumulation stopped in 2007/2007 (with the financial crisis and peak in commodity prices) when the ratio in Figure 1 was no longer greater than 1.  If I were to have the data through 2015, my guess is that the number would have stayed near 1 through 2013/2014 before again increasing in 2014/2015 as oil prices were falling dramatically (assuming the energy return ratio of Figure 2 remained relatively steady).

I also anticipate (could be confirmed by further research) that the ratio of Figure 1 would be < 1 for all years before 1980 leading to the beginning of the Industrial Revolution. Largely speaking, we extract the easiest to reach resources first, and these resources have high net energy (= low cost).  Thus, resources with higher net energy translate to larger values for Figure 2 which is the denominator for Figure 1. Thus, smaller values of Figure 1. Further, I know from my previous research that spending on energy was never lower than around the year 2000 (see my papers here and here for detailed explanations), which is what is indicated in Figure 3 (e.g., the higher the value the cheaper was energy). Energy continually became less expensive since the beginning of the Industrial Revolution until the 1970s and then again (much slower) through the end of the 20th Century.  Thus, the values for Figure 3 (the numerator of the calculation in Figure 1) will always be larger for the previous 100+ years.

This concept of Figure 1 is so interesting because it is likely that the time period of 1985-2007 is unique in all of history as the time period when the economy leveraged monetary spending by the energy system more than the leverage in energy that was provided by the energy system.  This is a ripe area for further understanding of macroeconomic modeling that properly accounts for the role of energy.

How much can the next president influence the U.S. energy system?

There have been dramatic changes in the U.S. energy system under our current president – a big drop in the use of coal, a boom in domestic oil and gas development from fracking, and the rapid spread of renewable energy.

But in terms of influencing energy technology deployment, the next president will have a lot less influence than you might expect.

When it comes to educating U.S. citizens on energy’s relationship to the broader economy, though, the next president could have a great impact. But I’m not holding my breath. In fact, I’d say it’s likely not going to happen.

Here I pose a few relevant questions about energy and the economy that could be asked of our next president and suggest some answers.

Read the rest of the post at The Conversation …